Efficient, Context-Sensitive Dynamic Analysis via Calling Context Uptrees
Jipeng Huang & Michael D. Bond (Ohio State University)

class X { int f; }
class A {
m(x) { read x.f; }}
class B extends A {
m(x) {
super.m(x);
globalSet.add(x);

® 9 U AW —

1}
9 class C extends B {
10 m(x) {
1 super.m(x);
12 read x.f;
MY
14 main() {
15 Aa; Bb; Cc; ...
16 for (A tmp:{b,a,b,c}) {
17 tmp.m(new X());
s 1)
Example program cCcT

Problem. To diagnose and fix bugs such as data races and mem-
ory leaks, programmers need to know which program locations
cause these bugs. Dynamic program analysis can report buggy pro-
gram locations by recording, for example, the last program loca-
tion to read and write each variable, and then reporting these lo-
cations for variables that the analysis later determines are involved
in data races or memory leaks. Static program locations are often
not enough to understand what the program was doing—especially
as software becomes more complex and concurrent—and program-
mers really want to know a program location’s calling context (in
this work, the active call sites).

A dynamic analysis can record the calling context of program
statements by constructing and maintaining each thread’s position
in a calling context tree (CCT) [1]. Each CCT node represents a
distinct calling context and consists of a call site and a mapping
from callee call sites to child nodes. In the example CCT above,
we suppose that a client is recording the context of the last read
of each object (read x.f). The objects x1—x4 are the instances of
new X(), and each points to the context that last read it. (There is
no “x2” because the program does not store it into globalSet, so
garbage collection (GC) collects it quickly.)

Constructing and maintaining each thread’s position in a CCT
slows programs by 2-3X or more because it is expensive to find
and reuse an existing child node at every program call. Each call
site has many statically possible callee call sites because each call
site may call multiple virtual methods, and each of these methods
may contain multiple call sites. The number can grow over time
due to dynamic class loading. At run time, a given context executes
relatively few of its statically possible callee call sites, so efficient
implementations use an indirect lookup such as a hash table to
find the existing child node (if any) for a callee call site. Thus,
each program call requires an indirect lookup to keep track of the
current CCT node. The CCT also adds high space overhead due to
millions of distinct contexts, many of which are irrelevant to the
client analysis.

Solution. We propose the calling context uptree (CCU), which does
not maintain pointers to child nodes. A CCU node consists of its
call site and a pointer to its parent node. At each program call,
a CCU-based approach allocates a new node and sets its parent
pointer to the parent calling context node. The CCU thus trades
space for time: it avoids an indirect lookup at each program call
but creates a new node instead.

However, the extra space may not be a real problem. Many
nodes do not live (stay reachable) for long. For example, a race de-
tector stores the context of only the last read and write to a variable,

x1 x3 x4 x1 x3

x4

CCU (before merging) CCU (after merging)

so prior accesses’ contexts will die (become unreachable); also, the
variables themselves may die. Tracing-based GC, which is propor-
tional to the live (not dead) objects, naturally and efficiently col-
lects the many dead nodes. In the example CCU (before merging),
GC has collected two unreachable contexts that were present in the
CCT, main():17 — A.m():3 and main():17 — C.m():11 — B.m():6
— A.m():3.

Still, the CCU contains redundant nodes for context main():17
< B.m():6 < A.m():3. We propose lazily merging redundant nodes,
to achieve the example CCU (after merging). In spirit, merging is
similar to a CCT reusing existing child nodes. However, by merging
only long-lived nodes, a CCU can avoid a lot of work because many
nodes die young and are never merged.

To avoid unnecessary work, a client analysis can build CCU
nodes (or CCT nodes, in fact) on demand. Each stack frame stores
a pointer to the caller call site’s node, if it has been constructed.
At a program read or write (if the client is race detection), the
on-demand algorithm walks the stack and constructs nodes until
it finds an existing node on the stack or reaches the top of the stack.

Related work. Dynamic analysis can walk the stack whenever con-
text is needed [4]; stack-walking is cheap only if it is rare. Recent
probabilistic approaches trade accuracy for performance but do not
scale well to many distinct contexts [2, 3]. Uniquely numbering
each context, for example via path profiling [5], does not scale well
because even without considering recursion, the number of stati-
cally possible contexts is much larger than 254 in real programs.

Conclusion. The CCU trades time for space in order to provide
efficient context sensitivity to dynamic bug detection analyses. We
have implemented the CCU (but not yet merging, nor a few other
optimizations), as well as race and leak detectors that use the CCU,
in a Java Virtual Machine. Preliminary results suggest that CCU-
based bug detection adds low enough overhead for all-the-time
use in production systems, where it can help programmers better
understand the causes of software bugs.

Thanks to Todd Mytkowicz for helpful feedback on the text.

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance
counters with flow and context sensitive profiling. In PLDI ’97.

[2] M. D. Bond, G. Z. Baker, and S. Z. Guyer. Breadcrumbs: efficient
context sensitivity for dynamic bug detection analyses. In PLDI ’10.

[3] T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred call path profiling.
In OOPSLA *09.

[4] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI "07.

[5] W.N. Sumner, Y. Zheng, D. Weeratunge, and X. Zhang. Precise calling
context encoding. In ICSE ’10.



